Package 'alluvial'

Title: Alluvial Diagrams
Description: Creating alluvial diagrams (also known as parallel sets plots) for multivariate and time series-like data.
Authors: Michał Bojanowski [aut, cre] , Robin Edwards [aut]
Maintainer: Michał Bojanowski <[email protected]>
License: MIT + file LICENSE
Version: 0.2-0
Built: 2024-12-30 05:05:55 UTC
Source: https://github.com/mbojan/alluvial

Help Index


Alluvial diagram

Description

Drawing alluvial diagrams, also known as parallel set plots.

Usage

alluvial(
  ...,
  freq,
  col = "gray",
  border = 0,
  layer,
  hide = FALSE,
  alpha = 0.5,
  gap.width = 0.05,
  xw = 0.1,
  cw = 0.1,
  blocks = TRUE,
  ordering = NULL,
  axis_labels = NULL,
  mar = c(2, 1, 1, 1),
  cex = par("cex"),
  xlim_offset = c(0, 0),
  ylim_offset = c(0, 0),
  cex.axis = par("cex.axis"),
  axes = TRUE,
  ann = TRUE,
  title = NULL
)

Arguments

...

vectors or data frames, all for the same number of observations

freq

numeric, vector of frequencies of the same length as the number of observations

col

vector of colors of the stripes

border

vector of border colors for the stripes

layer

numeric, order of drawing of the stripes

hide

logical, should particular stripe be plotted

alpha

numeric, vector of transparency of the stripes

gap.width

numeric, relative width of inter-category gaps

xw

numeric, the distance from the set axis to the control points of the xspline

cw

numeric, width of the category axis

blocks

logical, whether to use blocks to tie the flows together at each category, versus contiguous ribbons (also admits character value "bookends")

ordering

list of numeric vectors allowing to reorder the alluvia on each axis separately, see Examples

axis_labels

character, labels of the axes, defaults to variable names in the data

mar

numeric, plot margins as in par

cex, cex.axis

numeric, scaling of fonts of category labels and axis labels respectively. See par.

xlim_offset, ylim_offset

numeric vectors of length 2, passed to xlim and ylim of plot, and allow for adjusting the limits of the plotting region

axes

logical, whether to draw axes, defaults to TRUE

ann

logical, whether to draw annotations: category labels. Defaults to TRUE

title

character, plot title

Value

Invisibly a list with elements:

endpoints

A data frame with data on locations of the stripes with columns:

...

Vectors/data frames supplied to alluvial through ... that define the axes

.bottom,.top

Y locations of bottom and top coordinates respectively at which the stripes originate from the axis .axis

.axis

Axis number counting from the left

category_midpoints

List of vectors of Y locations of category block midpoints.

alluvium_midpoints

A data frame with location of midpoints on each alluvium segement with columns:

...

Vectors/data frames supplied to alluvial through the ...

.axis_from, .axis_to

IDs of axes that a segment originates from and goes to

.x, .y

X and Y locations of the alluvium midpoints

.slope

The (approximate) slope of the alluvium at the midpoint

Note

Please mind that the API is planned to change to be more compatible with dplyr verbs.

Examples

# Titanic data
tit <- as.data.frame(Titanic)

# 2d
tit2d <- aggregate( Freq ~ Class + Survived, data=tit, sum)
alluvial( tit2d[,1:2], freq=tit2d$Freq, xw=0.0, alpha=0.8,
         gap.width=0.1, col= "steelblue", border="white",
         layer = tit2d$Survived != "Yes" )

alluvial( tit2d[,1:2], freq=tit2d$Freq, 
         hide=tit2d$Freq < 150,
         xw=0.0, alpha=0.8,
         gap.width=0.1, col= "steelblue", border="white",
         layer = tit2d$Survived != "Yes" )

# 3d
tit3d <- aggregate( Freq ~ Class + Sex + Survived, data=tit, sum)

alluvial(tit3d[,1:3], freq=tit3d$Freq, alpha=1, xw=0.2,
         col=ifelse( tit3d$Survived == "No", "red", "gray"),
         layer = tit3d$Sex != "Female",
         border="white")


# 4d
alluvial( tit[,1:4], freq=tit$Freq, border=NA,
         hide = tit$Freq < quantile(tit$Freq, .50),
         col=ifelse( tit$Class == "3rd" & tit$Sex == "Male", "red", "gray") )

# 3d example with custom ordering
# Reorder "Sex" axis according to survival status
ord <- list(NULL, with(tit3d, order(Sex, Survived)), NULL)
alluvial(tit3d[,1:3], freq=tit3d$Freq, alpha=1, xw=0.2,
         col=ifelse( tit3d$Survived == "No", "red", "gray"),
         layer = tit3d$Sex != "Female",
         border="white", ordering=ord)

# Possible blocks options
for (blocks in c(TRUE, FALSE, "bookends")) {
    
    # Elaborate alluvial diagram from main examples file
    alluvial( tit[, 1:4], freq = tit$Freq, border = NA,
              hide = tit$Freq < quantile(tit$Freq, .50),
              col = ifelse( tit$Class == "3rd" & tit$Sex == "Male",
                            "red", "gray" ),
              blocks = blocks )
}


# Data returned
x <- alluvial( tit2d[,1:2], freq=tit2d$Freq, xw=0.0, alpha=0.8,
          gap.width=0.1, col= "steelblue", border="white",
          layer = tit2d$Survived != "Yes" )
points( rep(1, 16), x$endpoints[[1]], col="green")
points( rep(2, 16), x$endpoints[[2]], col="blue")

Alluvial diagram for multiple time series data

Description

This is a variant of alluvial diagram suitable for multiple (cross-sectional) time series. It also works with continuous variables equivalent to time

Usage

alluvial_ts(
  dat,
  wave = NA,
  ygap = 1,
  col = NA,
  alpha = NA,
  plotdir = "up",
  rankup = FALSE,
  lab.cex = 1,
  lab.col = "black",
  xmargin = 0.1,
  axis.col = "black",
  title = NA,
  title.cex = 1,
  axis.cex = 1,
  grid = FALSE,
  grid.col = "grey80",
  grid.lwd = 1,
  leg.mode = TRUE,
  leg.x = 0.1,
  leg.y = 0.9,
  leg.cex = 1,
  leg.col = "black",
  leg.lty = NA,
  leg.lwd = NA,
  leg.max = NA,
  xlab = NA,
  ylab = NA,
  xlab.pos = 2,
  ylab.pos = 1,
  lwd = 1,
  ...
)

Arguments

dat

data.frame of time-series (or suitable equivalent continuously disaggregated data), with 3 columns (in order: category, time-variable, value) with <= 1 row for each category-time combination

wave

numeric, curve wavyness defined in terms of x axis data range - i.e. bezier point offset. Experiment to get this right

ygap

numeric, vertical distance between polygons - a multiple of 10% of the mean data value

col

colour, value or vector of length matching the number of unique categories. Individual colours of vector are mapped to categories in alpha-numeric order

alpha

numeric, [0,1] polygon fill transparency

plotdir

character, string ('up', 'down' or 'centred') giving the vertical alignment of polygon stacks

rankup

logical, rank polygons on time axes upward by magnitude (largest to smallest) or not

lab.cex

numeric, category label font size

lab.col

colour, of category label

xmargin

numeric [0,1], proportional space for category labels

axis.col

colour, of axes

title

character, plot title

title.cex

numeric, plot title font size

axis.cex

numeric, font size of x-axis break labels

grid

logical, plot vertical axes

grid.col

colour, of grid axes

grid.lwd

numeric, line width of grid axes

leg.mode

logical, draw y-axis scale legend inside largest data point (TRUE default) or alternatively with custom position/value (FALSE)

leg.x, leg.y

numeric [0,1], x/y positions of legend if leg.mode = FALSE

leg.cex

numeric, legend text size

leg.col

colour, of legend lines and text

leg.lty

numeric, code for legend line type

leg.lwd

numeric, legend line width

leg.max

numeric, legend scale line width

xlab, ylab

character, x-axis / y-axis titles

xlab.pos, ylab.pos

numeric, perpendicular offset for axis titles

lwd

numeric, value or vector of length matching the number of unique categories for polygon stroke line width. Individual values of vector are mapped to categories in alpha-numeric order

...

arguments to pass to polygon()

Examples

if( require(reshape2) )
{
data(Refugees)
reshape2::dcast(Refugees, country ~ year, value.var = 'refugees')
d <- Refugees

set.seed(39) # for nice colours
cols <- hsv(h = sample(1:10/10), s = sample(3:12)/15, v = sample(3:12)/15)

alluvial_ts(d)
alluvial_ts(d, wave = .2, ygap = 5, lwd = 3)
alluvial_ts(d, wave = .3, ygap = 5, col = cols)
alluvial_ts(d, wave = .3, ygap = 5, col = cols, rankup = TRUE)
alluvial_ts(d, wave = .3, ygap = 5, col = cols, plotdir = 'down')
alluvial_ts(d, wave = .3, ygap = 5, col = cols, plotdir = 'centred', grid=TRUE,
            grid.lwd = 5)
alluvial_ts(d, wave =  0, ygap = 0, col = cols, alpha = .9, border = 'white',
            grid = TRUE, grid.lwd = 5)
alluvial_ts(d, wave = .3, ygap = 5, col = cols, xmargin = 0.4)
alluvial_ts(d, wave = .3, ygap = 5, col = cols, xmargin = 0.3, lab.cex = .7)
alluvial_ts(d, wave = .3, ygap = 5, col = cols, xmargin = 0.3, lab.cex=.7,
            leg.cex=.7, leg.col = 'white')
alluvial_ts(d, wave = .3, ygap = 5, col = cols, leg.mode = FALSE, leg.x = .1,
            leg.y = .7, leg.max = 3e6)
alluvial_ts(d, wave = .3, ygap = 5, col = cols, plotdir = 'centred', alpha=.9,
            grid = TRUE, grid.lwd = 5, xmargin = 0.2, lab.cex = .7, xlab = '',
            ylab = '', border = NA, axis.cex = .8, leg.cex = .7,
            leg.col='white', 
         title = "UNHCR-recognised refugees\nTop 10 countries (2003-13)\n")

# non time-series example - Virginia deaths dataset
d <- reshape2::melt(data.frame(age=row.names(VADeaths), VADeaths), id.vars='age')[,c(2,1,3)]
names(d) = c('pop_group','age_group','deaths')
alluvial_ts(d)
}

Refugees data

Description

Top 10 countries/territories of origin (excluding "Various") for period 2003-13 of UNHCR statistics on "Persons recognized as refugees under the 1951 UN Convention/1967 Protocol, the 1969 OAU Convention, in accordance with the UNHCR Statute, persons granted a complementary form of protection and those granted temporary protection."

Format

Data frame with the following columns:

country

Country or territory of origin

year

Year (2003-13)

refugees

Persons recognized as refugees under the 1951 UN Convention, etc..

Source

http://data.un.org/Data.aspx?d=UNHCR&f=indID%3aType-Ref